陈德福 |
特别副研究员, 硕导 |
|
学科:生物医学工程 |
||
方向:生物医学光子学 |
||
电子邮件:defu@bit.edu.cn |
||
办公地址:北京市海淀区中关村南大街5号10号办公楼445 |
||
欢迎动手能力强,热爱科研,具有光学、生物医学工程、电子、医学相关背景的同学加入! |
||
个人简介
2016年博士毕业于北京理工大学信息与电子学院,博士毕业后在美国Johns Hopkins University生物医学工程系进行3年的博士后研究工作,2020年7月作为特别副研究员加入英国威廉希尔公司,主要从事医学光学诊断和治疗技术及其在临床上的应用研究。作为骨干成员参与国家重点研发计划、国自然重点项目、重大科研仪器研制项目、美国NIH的R01项目等多个项目的研究工作。目前已在Science Advances,Theranostics,Biomedical Optics Express,Photodiagnosis and Photodynamic Therapy等国际知名期刊上发表学术论文40余篇,授权专利3项。
教育/培训经历
2012.09-2016.06:北京理工大学 (博士)
2009.09-2012.07:福建师范大学 (硕士)
2005.09-2009.07:福建师范大学 (学士)
工作经历
2020.07-至 今:北京理工大学 英国威廉希尔公司
2016.10-2019.10:约翰.霍普金斯大学(博士后) 生物医学工程系
学术任职
1. 国家半导体照明工程研发及产业联盟紫外LED专业委员会副主任
2. 中国生物医学工程学会生物医学光子学分会青年委员
3. 中华医学会激光医学分会基础学组委员
4. 国际光学工程学会(SPIE)会员,SPIE/COS Photonics Asia程序委员会委员
5. Journal of Biomedical Optics, Quantitative Imaging in Medicine and Surgery, Frontiers in Medicine, 中国激光医学杂志等期刊的审稿人
研究领域
1. 生物医学光学成像技术开发及其在疾病诊断、疗效监测中的应用
2. 光动力疗法剂量监测技术及临床应用
参与项目
1. 武汉光电国家研究中心开放基金课题,2020WNLOKF025, 宫颈癌前病变的光动力精准治疗技术研究,2021-01至2023-12,12万,在研,主持
2. 博士后国际交流计划派出项目,无创超高分辨光学相干层析成像技术监测血管靶向光动力效应,2016-10至2019-10,30万,结题,主持
3. 国家自然科学基金委,重点项目,61835015,调控血管靶向光动力治疗实时在体光学相干层析成像造影关键技术研究,2019-01至2023-12,278万,在研,参与
4. 国家自然科学基金委,重点项目,61635014,增强血管靶向光动力效应的时空规律及调控研究,2017-01至2021-12,280万,在研,参与
5. 国家重点研发计划,LED 用于健康与医疗的机理、方法、设备与应用研究,2017-01至2022-06,在研,参与
6. 国家自然科学基金委,重大科研仪器研制项目,61527827,可视化光动力治疗肿瘤的电子内窥镜系统,2016-01至2021-12,535万,在研,参与
7. 国家自然科学基金委,面上项目,61675236,血管靶向光动力中激光光热效应规律的实验及数学模型研究,2017-01至2020-12,66万,在研,参与
8. 国家自然科学基金委,应急管理项目,61450005,电子胃镜下光动力治疗肿瘤的可视化技术研究,2015-01至2015-12,40万,结题,参与
SCI Journal paper
[1] D. F. Chen, D. W. Nauen, H. C. Park, D. W Li1, W. Yuan, A. Li, H. H. Guan, C. Kut, K. L. Chaichana, C. Bettegowda, D. W. Li, A. Quiñones-Hinojosa, X. D. Li. Label-free imaging of human brain tissue at subcellular resolution for potential rapid intra-operative assessment of glioma surgery. Theranostics, 2021, doi:10.7150/thno.59244.
[2] D. F. Chen, Y. Wang, H. Y. Zhao, H. X. Qiu, Y. T. Wang, J. Yang, Y. Gu. Monitoring perfusion and oxygen saturation in port-wine stains during vascular targeted photodynamic therapy. Annals of Translational Medicine, 2021, 9(3): 214.
[3] D. F. Chen, W. Yuan, H. C. Park, X. D. Li. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. Biomedical Optics Express, 2020, 11(8): 4316-4325.
[4] W. Yuan, D. F. Chen, R. Sarabia-Estrada, H. Guerrero-Cázares, D. W. Li, A. Quiñones-Hinojosa, X. D. Li. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo. Science Advances, 2020, 6: eaaz9664.
[5] D. F. Chen, J. Ren, H. Y. Lin, B. H. Li, Y. Gu. Intraoperative monitoring blood perfusion of port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study. Photodiagnosis and Photodynamic Therapy, 2016, 14: 142-151.
[6] D. F. Chen, J. Ren, Y. Wang, H. Y. Zhao, B. H. Li, Y. Gu. Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains. Photodiagnosis and Photodynamic Therapy, 2016, 13:1-9.
[7] D. F. Chen, Y. Wang, H. Y. Lin, B. H. Li, X. C. Lin, and Y. Gu. Effects of pulse width and repetition rate of pulsed laser on kinetics and production of singlet oxygen luminescence. Journal of Innovative Optical Health Sciences, 2016, 9(5): 1650019.
[8] D. F. Chen, Y. Wang, B. H. Li, Y. Gu. Influence of pulse repetition rate on singlet oxygen production during photosensitization using a pulsed laser. Photonics & Lasers in Medicine, 2015, 4(4): 312-314.
[9] D. F. Chen, H. F. Zheng, H. Y. Lin, H. Y. Lin, Z. D. Ke, S. S. Xie, B. H. Li. Light-emitting diode based illumination system for in vitro photodynamic therapy. International Journal of Photoenergy, 2012, 2012: 920671.
[10] H. Y. Lin#, D. F. Chen# (Equal Contribution), M. Wang, J. Q. Lin, B. H. Li, S. S. Xie. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement. Journal of Optics, 2011, 13(12): 125301.
[11] T. Q. Huang#, D. F. Chen# (Equal Contribution), W. D. Su, H. Y. Lin, B. H. Li, S. S. Xie. A new time-gated synchronization controller for the detection of singlet oxygen luminescence. Optoelectronics and Advanced Materials-Rapid Communications, 2010, 4(8):1083-1087.
[12] H. H. Guan, W. X. Liang, A. Li, Y. A. Gau, D. F. Chen, M. J. Li, D. E. Bergles, X. D. Li. Multicolor fiber-optic two-photon endomicroscopy for brain imaging. Optics Letters, 2021, 46(5): 1093-1096.
[13] A. Li, G. Hall, D. F. Chen, W. X. Liang, B. Ning, H. H. Guan, X. D. Li. A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy. Journal of Biophotonics, 2018, 12: e201800229.
[14] X. W. Yao, D. W. Li, H. C. Park, D. F. Chen, H. H. Guan, M. Mahendroo, X. D. Li. "Ultra-sensitive optical coherence elastography using high-dynamic-range force loading scheme for cervical rigidity assessment," Biomedical Optics Express, 2020, 11(2): 688-698.
[15] W. X. Liang, H. C. Park, K. Y. Li, A. Li, D. F. Chen, H. H. Guan, Y. Yue, Y. A. Gau, D. Bergles, M. J. Li, H. Lu, X. D. Li. Throughput-speed product augmentation for scanning fiber-optic two-photon endomicroscopy. IEEE Transactions on Medical Imaging, 2020, 39(12): 3779-3787.
[16] L. S. Lin, H. Y. Lin, Y. Shen, D. F. Chen, Y. Gu, B. C. Wilson, B. H. Li. Singlet oxygen luminescence image in blood vessels during vascular targeted photodynamic therapy. Photochemistry and Photobiology, 2020, 96: 646-651.
[17] Y. D. Liu, D. Zhu, J. J. Xu, Y. Wang, W. Feng, D. F. Chen, H. L. Liu, X. H. Guo, Y. Q. Li, H. X. Qiu, Y. Gu. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin. Photodiagnosis and Photodynamic Therapy, 2020, 30: 101734.
[18] Y. D. Liu, Q. Ang, H. Wu, J. J. Xu, D. F. Chen, H. Y. Zhao, H. L. Liu, X. H. Guo, H. X. Qiu, Y. Gu. Prevalence of human papillomavirus genotypes and precancerous cervical lesions in a screening population in Beijing, China: Analysis of results from China’s Top 3 Hospital, 2009–2019. Virology Journal, 2020, 17:104.
[19] D. W. Li, J. M. Wu, Y. F. He, X. W. Yao, W. Yuan, D. F. Chen, H. C. Park, S. Y. Yu, J. L. Prince, X. D. Li. Parallel deep neural networks for endoscopic OCT image segmentation. Biomedical Optics Express, 2019, 10: 1126-1135.
[20] H. Y. Zhao, R. Yin, Y. Wang, Y. H. Leed, T. Luo, J. Y. Zhang, H. X. Qiu, S. Ambrose, L. J. Wang, J. Ren, J. Yao, D. F. Chen, Y. C. Wang, Z. P. Liang, J. Zhen, S. M. Wu, Z. L. Ye, J. Zeng, N. Y. Huang, Y. Gu. Modulating mitochondrial morphology enhances antitumor effect of 5-ALA-mediated photodynamic therapy both in vitro and in vivo. Journal of Photochemistry & Photobiology, B: Biology, 2017, 176: 81-91.
[21] Z. Qiu, G. Yao, D. F. Chen, Y. Wang, Y. Gu, B. Li. Determination of optical and microvascular parameters of port wine stains using diffuse reflectance spectroscopy. Advances in Experimental Medicine and Biology, 2016, pp 359-365.
[22] Q. L. Zou, H. Y. Zhao, Y. X. Zhao, Y. Y. Fang, D. F. Chen, J. Ren, X. P. Wang, Y. Wang, Y. Gu, F. P. Wu. Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble Bis(arylidene)cycloalkanone photosensitizers. Journal of Medicinal Chemistry, 2015, 58: 7949-7958.
[23] J. Ren, P. C. Li, H. Y. Zhao, D. F. Chen, J. Zhen, Y. Wang, Y. C. Wang, Y. Gu. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study. Lasers in Medical Science, 2014, 29(2):781-788.
[24] Z. H. Qiu, D. F. Chen, Y. Wang, G. P. Yao, Y. Gu, B. H. Li. Monitoring blood volume fraction and oxygen saturation in port-wine stains during vascular targeted photodynamic therapy with diffuse reflectance spectroscopy: results of a preliminary case study. Photonics & Lasers in Medicine, 2014, 3(3): 273-280.
[25] H. Y. Zhao, R. Yin, D. F. Chen, J. Ren, Y. C. Wang, H. Deng, Y. Wang, H. X. Qiu, N. Y. Huang, Q. L. Zou, J. Q. Zhao, Y. Gu. In vitro and in vivo antitumor activity of a novel hypocrellin B derivative for photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2014, 11: 204-212.
[26] L. S. Lin, H. Y. Lin, D. F. Chen, S. S. Xie, Y. Gu, B. C. Wilson, B. H. Li. Imaging singlet oxygen luminescence in blood vessels. 2014, SPIE Newsroom, DOI: 10.1117/2.1201406.005511.
[27] B. H. Li, H. Y. Lin, D. F. Chen, B. C. Wilson, Y. Gu. Singlet oxygen detection during photosensitization. Journal of Innovative Optical Health Sciences, 2013, 6(1): 1330002.
[28] H. Y. Lin, Yi Shen, D. F. Chen, L. S. Lin, B. C. Wilson, B. H. Li, S. S. Xie. Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. Journal of Fluorescence, 2012, 23(1): 41-7.
[29] Y. Shen, H. Y. Lin, Z. F. Huang, D. F. Chen, B. H. Li, S. S. Xie. Indirect imaging of singlet oxygen generation from a single cell. Laser Physics Letters, 2011, 8(3): 232-238.
[30] B. H. Li, H. Y. Lin, D. F. Chen, M. Wang, S. S. Xie. Detection system for singlet oxygen luminescence in photodynamic therapy. Chinese Optics Letters, 2010, 8(1): 86-88.
EI Journal paper
[31] D. F. Chen, D. W. Nauen, X. D. Li, Y. Gu. Optical histology for cancer detection and PDT treatment assessment. Proc. of SPIE, 2020, 11553: 1155318.
[32] D. F. Chen, D. W. Nauen, X. D. Li. Label-free histopathology of human brain tissue with multiphoton imaging. Journal of Neuropathology and Experimental Neurology, 2019, 78 (6), 552-552.
[33] D. F. Chen, J. Ren, Y. Wang, Y. Gu. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy. Proc. of SPIE, 9268: 92681Y-1.
[34] D. F. Chen, H. Y. Lin, Yi Shen, B. H. Li, S. S. Xie. Optimal discrimination threshold for the detection of singlet oxygen luminescence. Journal of Physics: Conference Series, 2011, 277: 012004.
[35] H. Lin, Y. Shen, D. F. Chen, L. S. Lin, B. Li, S. Xie. Determination of singlet oxygen quantum yield of HiPorfin using Singlet Oxygen Sensor Green. Proc. of SPIE, 2010, 7845: 78451J.
[36] L. Lin, H. H. Lin, D. F. Chen, L. Chen, M. Wang, S. Xie, Y. Gu, B. C. Wilson, B. H. Li. Direct imaging of singlet oxygen luminescence generated in blood vessels during photodynamic therapy. Proc. of SPIE, 2014, 9129: 912920-1.
[37] J. Zhen, C. Wang, Y. Wang, D. F. Chen, Y. Gu. Optical coherence tomography: A potential tool for prediction of treatment response for port wine stain after photodynamic therapy. Proc. of SPIE, 9268: 926807.
[38] Y. Shen, H. H. Lin, Z. Huang, L. Xiao, D. F. Chen, B. H. Li, S. Xie. Kinetic analysis of singlet oxygen generation in a living cell using Singlet Oxygen Sensor Green. Proc. of SPIE, 2010, 7845: 78451F.
[39] L. Lin, Y. Li, J. Zhang, Z. Tan, D. F. Chen, S. Xie, Y. Gu, B. H. Li. Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy. Proc. of SPIE, 9268: 92680T.
专利
[1] 李步洪, 陈德福, 沈毅, 谢树森. 一种基于LED阵列的离体细胞光动力作用效果比照仪. 专利号: ZL200910112716.X.
[2] 李步洪, 林慧韫, 陈德福, 林黎升, 沈毅, 谢树森. 一种具有氧分压和光敏剂荧光监测功能的单态氧检测装置. 专利号: ZL201010044815.1.
[3] 李步洪, 刘丽娜, 陈德福, 聂英斌, 黄志勇, 李伟华, 谢树森. 人体组织自体荧光多波长检测装置. 专利号: ZL201020533296.0.
[4] 范晓静,邱海霞,陈德福,顾瑛. 一种动物生物节律实验柜,申请号:202022380282.6
[5] 顾瑛,孙圣坤,谭一舟,邱海霞,陈德福,赵洪友,曾晶,王颖. 一种用于人体腔道及空腔器官内的光动力治疗器械, 申请号:202011295644.X.
[6] 邱海霞,顾瑛,孟元光,谭一舟,陈德福,赵洪友,王颖,曾晶.一种用于宫颈早癌及癌前病变的光动力治疗器械, 申请号:2020211295666.6.